Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa.

نویسندگان

  • A Kuroda
  • A Kornberg
چکیده

Generation of a wide variety of nucleoside (and deoxynucleoside) triphosphates (NTPs) from their cognate nucleoside diphosphates (NDPs) is of critical importance in virtually every aspect of cellular life. Their function is fulfilled largely by the ubiquitous and potent nucleoside diphosphate kinase (NDK), most commonly using ATP as the donor. Considerable interest is attached to the consequence to a cell in which the NDK activity becomes deficient or over-abundant. We have discovered an additional and possibly auxiliary NDK-like activity in the capacity of polyphosphate kinase (PPK) to use inorganic polyphosphate as the donor in place of ATP, thereby converting GDP and other NDPs to NTPs. This reaction was observed with the PPK activity present in crude membrane fractions from Escherichia coli and Pseudomonas aeruginosa as well as with the purified PPK from E. coli; the activity was absent from the membrane fractions obtained from E. coli mutants lacking the ppk gene. The order of substrate specificity for PPK was: ADP > GDP > UDP, CDP; activity with ADP was 2-60 times greater than with GDP, depending on the reaction condition. Although the transfer of a phosphate from polyphosphate to GDP by PPK to produce GTP was the predominant reaction, the enzyme also transferred a pyrophosphate group to GDP to form the linear guanosine 5' tetraphosphate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A polyphosphate kinase (PPK2) widely conserved in bacteria.

Synthesis of inorganic polyphosphate (poly P) from the terminal phosphate of ATP is catalyzed reversibly by poly P kinase (PPK, now designated PPK1) initially isolated from Escherichia coli. PPK1 is highly conserved in many bacteria, including some of the major pathogens such as Pseudomonas aeruginosa. In a null mutant of P. aeruginosa lacking ppk1, we have discovered a previously uncharacteriz...

متن کامل

Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1.

In response to iron limitation, Pseudomonas aeruginosa produces the fluorescent siderophore pyoverdine. Transcription of pyoverdine biosynthetic (pvd) genes is driven by the iron starvation sigma factor PvdS, which is negatively regulated by the Fur-Fe(II) holorepressor. We studied the effect of AlgQ, the Escherichia coli Rsd orthologue, on pyoverdine production by P. aeruginosa PAO1. AlgQ is a...

متن کامل

Polyphosphate:AMP phosphotransferase as a polyphosphate-dependent nucleoside monophosphate kinase in Acinetobacter johnsonii 210A.

We have cloned the gene for polyphosphate:AMP phosphotransferase (PAP), the enzyme that catalyzes phosphorylation of AMP to ADP at the expense of polyphosphate [poly(P)] in Acinetobacter johnsonii 210A. A genomic DNA library was constructed in Escherichia coli, and crude lysates of about 6,000 clones were screened for PAP activity. PAP activity was evaluated by measuring ATP produced by the cou...

متن کامل

Inorganic polyphosphate and polyphosphate kinase: their novel biological functions and applications.

In this review, we discuss the following two subjects: 1) the physiological function of polyphosphate (poly(P)) as a regulatory factor for gene expression in Escherichia coli, and 2) novel functions of E. coli polyphosphate kinase (PPK) and their applications. With regard to the first subject, it has been shown that E. coli cells in which yeast exopolyphosphatase (poly(P)ase), PPX1, was overpro...

متن کامل

Use of an Escherichia coli recombinant producing thermostable polyphosphate kinase as an ATP regenerator to produce fructose 1,6-diphosphate.

Heat-treated Escherichia coli producing Thermus polyphosphate kinase regenerated ATP by using exogenous polyphosphate. This recombinant could be used as a platform to produce valuable compounds in combination with thermostable phosphorylating or energy-requiring enzymes. In this work, we demonstrated the production of fructose 1,6-diphosphate from fructose and polyphosphate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 94 2  شماره 

صفحات  -

تاریخ انتشار 1997